Questions Q1. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . Bacteria are becoming increasingly resistant to antibiotics. Controlling the spread of antibiotic resistance is necessary. Many types of bacteria are resistant to penicillin and tetracycline. (i) Which row of the table shows the part of a bacterial cell affected by these antibiotics? Tetracycline Penicillin cell wall cell wall A cell wall ribosome 1 В ribosome cell wall 23 C ribosome ribosome D (ii) Which row of the table describes the action of penicillin and tetracycline? | | | Penicillin | Tetracycline | |----|---|----------------|----------------| | | Α | bactericidal | bactericidal | | × | В | bactericidal | bacteriostatic | | Œ. | C | bacteriostatic | bactericidal | | × | D | bacteriostatic | bacteriostatic | (Total for question = 2 marks) (1) (1) PhysicsAndMathsTutor.com #### Q2. Bacteria are becoming increasingly resistant to antibiotics. Controlling the spread of antibiotic resistance is necessary. In an investigation, *E.coli* bacteria were isolated from animals reared for food and from some wild animals. The mean percentage of the *E.coli* isolated from each type of animal that were resistant to different types of antibiotics was determined. The table shows the results of this investigation, where n is the number of each type of animal. | | Mean percentage of resistant <i>E.coli</i> isolated from animals reared for food (%) | | | Mean percentage of resistant E.coli isolated from wild animals (%) | | |-----------------|--|------------------------------|------------------|--|------------------| | Antibiotic | Broiler
chicken
n = 45 | Village
chicken
n = 45 | Cattle
n = 12 | Bat
n = 13 | Rodent
n = 35 | | Ampicillin | 50.00 | 8.89 | 8.33 | 0.00 | 8.57 | | Cephalothin | 14.29 | 8.89 | 8.33 | 20.00 | 14.58 | | Chloramphenicol | 46.43 | 0.00 | 0.00 | 0.00 | 0.00 | | Neomycin | 50.00 | 2.22 | 25.00 | 0.00 | 5.71 | | Tetracycline | 95.86 | 55.56 | 25.00 | 0.00 | 2.86 | (i) Calculate the ratio of tetracycline-resistant *E.coli* in all the chickens to tetracycline-resistant *E.coli* in cattle. | Answer | | |--------|--| |--------|--| (ii) There was a total of 2×10^8 *E.coli* isolated from cattle and 6×10^9 *E.coli* isolated from rodents. Calculate how many more *E.coli* are resistant to cephalothin in rodents than in cattle. **(2)** | Anguar | | |---------|--| | Allowel | | # Edexcel (B) Biology A-level - Action of Antibiotics | (iii) Antibiotics can be added to animal feed. | |---| | It is thought this use of antibiotics has contributed to the spread of antibiotic resistance. Evaluate the extent to which the results of this investigation support this idea. | | (4 | (Total for question = 8 marks) Q3. Bacteria are becoming increasingly resistant to antibiotics. Controlling the spread of antibiotic resistance is necessary. One method of controlling the spread of antibiotic resistance is to avoid unnecessary prescriptions of antibiotics. The table shows some illnesses and whether a prescription for antibiotics is recommended. | Illness | Antibiotic prescription | | |-------------------------|-------------------------|--| | Bronchitis | may be recommended | | | Ear infection | may be recommended | | | Influenza | not recommended | | | Fluid in the ear | not recommended | | | Strep throat | recommended | | | Urinary tract infection | recommended | | | Explain why these recommendations could reduce the spread of antibiotic resistance. | | |---|-----| | | (2) | (Total for question = 2 marks) #### Q4. Acetyl CoA is produced in the link reaction when pyruvate is broken down. The photograph shows a molecule of the enzyme acetyl CoA carboxylase. This enzyme is involved in the conversion of acetyl CoA into fatty acids. The enzyme is activated by citrate. Citrate does not bind at the active site. Citrate is produced in the Krebs cycle. infections. The enzyme is inhibited by long chain fatty acyl CoA molecules. Fatty acyl CoA molecules have a longer carbon chain than acetyl CoA. The enzyme acetyl CoA carboxylase has a different structure in bacteria. The enzyme in bacteria is made of several polypeptide subunits whereas in humans, the enzyme is one large polypeptide. Inhibitors of the bacterial enzyme are being developed to treat bacterial infections. Explain why inhibitors of the bacterial enzyme may be useful when treating bacterial | (2) | |-----| | | | | | - | | • | | | (Total for question = 2 marks) | 7 | | |---|--| | | | | Cysteine proteases are enzymes found in fruits such as pineapples. | | |---|-----| | When a protease enzyme is added to fat-free skimmed milk, the milk turns from cloudy to clear. | | | Cysteine proteases are also found in the predatory bacterium <i>Bdellovibrio bacteriovorus</i> (BvB). | | | These bacteria are harmless to humans but prey on Gram negative bacteria. | | | (i) Give two differences between Gram negative and Gram positive bacteria. | | | | (2) | | | | | | | | | | | | | | | | | (ii) The cell of the predatory BvB is 1μm in length and can swim 100 times its length per second. | | | Calculate the swimming speed of this bacterial cell in mm s ⁻¹ . | | | | (2) | | | | | | | | | | | | | | Answer | | | (iii) The BvB bacteria have been described as 'living antibiotics'. | | | Explain why the BvB bacteria might be useful in the future for treating bacterial | | | infections. | (2) | | | | | | | | | | (Total for question = 6 marks) Q6. Antibiotics are widely used to treat infections. Some antibiotics are bactericidal. The table shows information about five antibiotics. | Antibiotic | Year
discovered | Time for first resistant
strain of bacteria to be
detected / years | Number of different types
of each antibiotic that exist
today | |--------------|--------------------|--|---| | Penicillin | 1928 | 1 | >18 | | Tetracycline | 1945 | 3 | >16 | | Vancomycin | 1953 | 27 | 1 | | Linezolid | 1978 | 1 | 1 | | Daptomycin | 1985 | 2 | 1 | | Analyse the data to comment on the number of types of each antibiotic that exist today. | (5) | |---|-----| (Total for question = 5 marks) | \sim | 7 | | |--------|---|--| | u | 1 | | | | (Total for question = 1 mark) | |--|-------------------------------| | | | | | | | | (1) | | State what is meant by the term bactericidal. | (4) | | Some antibiotics are bactericidal. | | | Authorities are widely used to treat infections. | | | Antibiotics are widely used to treat infections. | | # Mark Scheme #### Q1. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---------------------|------| | (i) | The only correct answer is B | | | | | A is incorrect because tetracycline targets the ribosomes | | | | | C is incorrect because tetracycline targets the ribosomes and penicillintargets the cell wall | | | | | D is incorrect because penicillin targets the cell wall | | (1) | | (ii) | The only correct answer is B | | × | | | A is incorrect because tetracycline is bacteriostatic | | | | | C is incorrect because tetracycline is bacteriostatic and penicillin isbactericidal | | | | | D is incorrect because penicillin is bactericidal | , | (1) | #### Q2. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (i) | number of chicken and cattle with resistant E.coli (1) ratio given (1) | Example of calculation: (43 + 25) 68 chickens and 3 cattle 22.67:1/22.7:1/23:1/1:0.04 | (2) | | | OR | (95.86 + 55.56) ÷ 2 = 75.71 | | | | mean percentage of
resistant bacteria in
chickens calculated
(1) ratio given (1) | (75.71 : 25.00 =) 3.03 : 1 / 3 : 1 ACCEPT 1 : 0.33 / 1 : 0.3 / 1 : 1 NB correct answer with no working gains two marks {6.06 : 1 / 6.1 : 1 / 6 : 1 / 1 : 0.17 / 1 : 0.2} = 1 mark | | | Question
Number | | Additional Guidance | Mark | |--------------------|--|--|------| | (ii) | mean number of resistant
bacteria for cattle or rodents
calculated (1) answer (1) | Example of calculation: 8.33% of 2 × 10 ⁸ = 16.66 × 10 ⁶ OR 14.58 % of 6 × 10 ⁹ = 87.48 × 10 ⁷ 53 / 52.5 / 52.51 (times more) 8.6 × 10 ⁸ / 8.58 × 10 ⁸ / 858 140 000 etc (more bacteria) correct answer with no working | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|------| | (iii) | An answer that makes reference to four of the following: • (idea supported because) overall there are more resistant bacteriain the animals reared for food (1) • (idea not entirely supported because) the bacteria in wild animalsare more resistant to cephalothin (1) | ACCEPT other quoted data to illustrate exception | | | | the number of animals in each group is very small (1) the number of different types of {animal / antibiotic} is limited (sodata may not be representative) (1) | ACCEPT validity of data | (4) | | | no standard deviations shown so spread
of data is unknown (1) | | | ### Q3. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | | An explanation that makes reference to the | | | | | antibiotics are only prescribed if the illness could be caused bybacteria / antibiotics not prescribed if the illness is caused by viruses only (1) | ACCEPT reduces the {use of antibiotics / exposureof bacteria to antibiotics} | | | | because antibiotics acts as a
selection pressure for resistant
bacteria (1) | ACCEPT a description e.g.
presence of antibioticwont be a
selective advantage
DO NOT ACCEPT immune | (2) | # Q4. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|----------------------------------|------| | | An explanation that makes reference to two of thefollowing: | | | | | an inhibitor of the bacterial
enzyme may not affect thehuman
one (1) | Allow enzymes are specific | | | | description of effect of treatment eg
fatty acids not madeso {less
respiration / bacteria die} (1) | Allow is an effective antibiotic | | | 0 | so that there will be fewer side
effects if used as atreatment
for infections (1) | diabloca | (2) | ### Q5. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (i) | An answer that makes reference to two of the following: Gram positive bacteria have more peptidoglycan than Gram negative bacteria (1) Gram positive stains {purple / blue} (with Gram stain), but Gram negative do not stain {purple / blue} (with Gram stain) (1) Gram positive contains {teichoic acid / lots of murein} but Gram negative do not (1) Gram positive have no {periplasmic space /outer membrane} but Gram negative do (1) | Allow Gram positive have a thicker cell wall thanGram negative Allow Gram positive stains {purple / blue} (withGram stain), but Gram negative stain red (with Gram stain) Allow Gram positive have low {lipid / phospholipid} content but Gram negative havehigh {lipid / phospholipid} content | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (ii) | An answer that makes reference to the following: | Example calculation | | | | | $1\mu m = 0.001 \text{ mm}$ | | | | conversion of micrometres to
mm (1) | 0.001 x 100 = 0.1 (mm s ⁻¹) | | | | calculation of speed (1) | Correct answer with no working gains full marks | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|------------------------|------| | (iii) | An explanation that makes reference to two of the following: | | | | | BvB can kill gram negative bacteria (1) | | | | | • without side effects for humans (1) | Allow bacteria cannot | | | | therefore could be useful when
treating resistant bacterialinfections | become resistantto BvB | | | | (1) | | (2) | ### Q6. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|----------------------|------| | | An answer that makes reference to the following: | | | | | there are more types of
{penicillin / tetracycline / older
antibiotic} (1) | Do not accept immune | | | | because there has been more time for
resistant strains to appear (1) | | | | | vancomycin has only one type (1) | | | | | because it has taken {a long time / 27 years} for the resistant strains to appear (1) | | | | | there is one type of
{linezolid / daptomycin / younger
antibiotic} (1) | | | | | because there has been less time for
resistant strains to appear (1) | | (5) | # Q7. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|-----------------------------|--|------| | | {kills / destroys} bacteria | Do not accept causes
lysis / affects cell wall
synthesis | (1) |